Effect of auxin on acropetal auxin transport in roots of corn.

نویسنده

  • L J Feldman
چکیده

Acropetal [(14)C]indoleacetic acid (IAA) transport was investigated in roots of corn. At least 40 to 50% of this movement is dependent on activities in the root apex. Selective excision of various populations of cells comprising the root apex, e.g. the root cap, quiescent center, or proximal meristem show that the proximal meristem is the critical region in the apex with regard to influencing IAA movement. The quiescent center has no influence and the root cap has only a minor effect. Excision and replacement of the proximal meristem with an exogenous supply of 10(-8) to 10(-9) molar IAA prevents the reduction in acropetal IAA transport which would normally occur in the absence of this meristem. Substituting 10(-9) molar IAA for the excised root cap brings about a significant increase in the amount of IAA moved acropetally, as compared to intact roots with the root cap still in place. From this and previous work, it is concluded that IAA synthesis occurring in the proximal meristem stimulates the movement of IAA from the basal to apical end of the root.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in Arabidopsis Multidrug Resistance-Like ABC Transporters Separate the Roles of Acropetal and Basipetal Auxin Transport in Lateral Root Development W OA

Auxin affects the shape of root systems by influencing elongation and branching. Because multidrug resistance (MDR)-like ABC transporters participate in auxin transport, they may be expected to contribute to root system development. This reverse genetic study of Arabidopsis thaliana roots shows that MDR4-mediated basipetal auxin transport did not affect root elongation or branching. However, im...

متن کامل

Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development.

Auxin affects the shape of root systems by influencing elongation and branching. Because multidrug resistance (MDR)-like ABC transporters participate in auxin transport, they may be expected to contribute to root system development. This reverse genetic study of Arabidopsis thaliana roots shows that MDR4-mediated basipetal auxin transport did not affect root elongation or branching. However, im...

متن کامل

Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes.

Two Arabidopsis thaliana ABC transporter genes linked to auxin transport by various previous results were studied in a reverse-genetic fashion. Mutations in Multidrug Resistance-Like1 (MDR1) reduced acropetal auxin transport in roots by 80% without affecting basipetal transport. Conversely, mutations in MDR4 blocked 50% of basipetal transport without affecting acropetal transport. Developmental...

متن کامل

Effects of cations on hormone transport in primary roots of Zea mays.

We examined the influence of aluminum and calcium (and certain other cations) on hormone transport in corn roots. When aluminum was applied unilaterally to the caps of 15 mm apical root sections the roots curved strongly away from the aluminum. When aluminum was applied unilaterally to the cap and 3H-indole-3-acetic acid was applied to the basal cut surface twice as much radioactivity (assume...

متن کامل

The transparent testa4Mutation Prevents Flavonoid Synthesis and Alters Auxin Transport and the Response of Arabidopsis Roots to Gravity and Light W

We examined whether flavonoids act as endogenous auxin transport regulators during gravity vector and light intensity changes in Arabidopsis thaliana roots. Flavonoid deficient transparent testa4 [tt4(2YY6)] seedlings had elevated root basipetal auxin transport compared with the wild type, consistent with the absence of a negative auxin transport regulator. The tt4(2YY6) roots had delayed gravi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 67 2  شماره 

صفحات  -

تاریخ انتشار 1981